The transformation matrix is a representation of the transformed standard basis
vectors. For example, in a 2-dimensional coordinate system if the transformed coordinates of the unit vector \hat{i} are,
\begin{bmatrix}  3\\   -2  \end{bmatrix}
and that of unit vector \hat{j} are,
\begin{bmatrix}  2\\   1  \end{bmatrix}
These two basis vectors can be combined in a matrix form,
M=\begin{bmatrix}  3 & 2\\   -2 & 1  \end{bmatrix}
M is then called the transformation matrix.

Also, any vector \vec{v} can be represented as a linear combination of the standard
basis vectors. For example, if \vec{v} is a 3-dimensional vector such that,
\vec{v}=\begin{bmatrix}  x\\   y\\   z  \end{bmatrix}
then \vec{v} can be described as the linear combination of the standard basis vectors,
\vec{v}=x\begin{bmatrix}  1\\   0\\   0  \end{bmatrix}  +  y\begin{bmatrix}  0\\   1\\   0  \end{bmatrix}  +  z\begin{bmatrix}  0\\   0\\   1  \end{bmatrix}  =  \begin{bmatrix}  x\\   y\\   z  \end{bmatrix}
This property can be extended to any R^{n} vector.

Now, let’s say we want to determine the transformed coordinates of the vector,
\vec{w}=\begin{bmatrix}2\\4 \end{bmatrix}
Multiplying the vector with the transformed basis vector matrix,
M\vec{w}=2\begin{bmatrix}  3\\   -2  \end{bmatrix}  +  4\begin{bmatrix}  2\\   1  \end{bmatrix}  =  \begin{bmatrix}  6\\   -4  \end{bmatrix}  +  \begin{bmatrix}  8\\   4  \end{bmatrix}
M\vec{w}=\begin{bmatrix}  14\\   0  \end{bmatrix}
So in general any vector \vec{r}=\begin{bmatrix} x\\y\end{bmatrix} can be transformed by multiplying it
with the transformation matrix M=\begin{bmatrix} 3 & 2\\ -2 & 1 \end{bmatrix}
The general form for transformation can be derived as,
T\left (\vec{r}\right )=M\vec{r}
T\vec{r}=\begin{bmatrix}  3 &2 \\   -2 & 1  \end{bmatrix}  \begin{bmatrix}  x\\   y  \end{bmatrix}  =\begin{bmatrix}  3x+2y\\   -2x+y  \end{bmatrix}
Hence, \begin{bmatrix} 3x+2y\\ -2x+y \end{bmatrix} is a the general form of the transformation matrix.
Any vector which is passed into this matrix will be transformed. Why not try passing the 2-dimensional standard basis vectors into this and see what comes out?

The unit vector \hat{i}=\begin{bmatrix} 1\\0 \end{bmatrix} along the x-axis will be transformed to,
\begin{bmatrix}  3(1)+2(0)\\   -2(1)+0  \end{bmatrix}  =\begin{bmatrix}  3\\   -2  \end{bmatrix}

The unit vector \hat{j}=\begin{bmatrix} 0\\1 \end{bmatrix} along the y-axis will be transformed to,
\begin{bmatrix}  3(0)+2(1)\\   -2(0)+1  \end{bmatrix}  =\begin{bmatrix}  2\\   1  \end{bmatrix}

If we now combine the transformed unit vectors \hat{i} and \hat{j} into a matrix,
\begin{bmatrix}  3 &2 \\   -2 & 1  \end{bmatrix}

And we get our original transformation matrix back.

How to find the transformation matrix of a linear transformation

Comments, Questions or Suggestions: